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Abstract

Star clusters are excellent astrophysical laboratories to study the history of star formation and chem-

ical enrichment in our Galaxy. These are groupings of stars born out of the same gas cloud, and

are theoretically expected to have similar chemical compositions. Empirically validating this chem-

ical homogeneity is important yet difficult because the measurement of accurate and precise chem-

istry of stars using stellar spectroscopic data is statistically challenging. We perform high-fidelity

Likelihood-free Inference of chemistry of stars using state-of-the-art Neural Density Estimation to

observationally determine the level of chemical homogeneity in open clusters. We make our model

computationally efficient by incorporating active learning and dimensionality reduction of stellar

spectroscopic data through Functional Principal Component Analysis. Our constraints on chemical

homogeneity will not only help understand the detailed evolution of star-forming clouds but also

allow us to trace the chemical and dynamical history of our Galaxy through chemical tagging.
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1. Introduction

A star cluster is a set of stars that are gravitationally bound to each other and are believed to

form in the same gas cloud at the same time (Shu et al., 1987; Lada and Lada, 2003). Sim-

ulations show that there is turbulent mixing in these clouds which makes the star-forming

gas chemically homogeneous (Feng and Krumholz, 2014). Due to this, we expect stars

in a cluster to have similar chemistry, and there is now a growing need to observationally

test this theory in order to understand the exact nature of star-forming clouds. The de-

tailed evolution and mixing of the gas in these clouds, especially during the initial stages

of star-formation, is not yet properly understood because the young star clusters are diffi-

cult to observe (McKee and Tan, 2002; Feng and Krumholz, 2014). Over a timescale of

a few million years, high mass stars die and produce heavy elements that enrich the gas,

and this complicates our simple picture of star-formation. Thus, we need to measure the

birth chemistry of long-lived stars in a cluster and constrain their chemical homogeneity to

understand the evolution of star-forming clouds.

The chemistry of long-lived stars measured through high-resolution spectroscopic ob-

servations can be traced back to the birth chemistry if we understand the processes of

stellar evolution that affect a star’s chemistry over its lifetime. Despite several efforts to de-

velop a comprehensive theory of stellar evolution and orders-of-magnitude improvements

in the observed spectral data, stellar spectroscopy presents many challenges due to high-

dimensional parameter spaces and the instrumental factors that affect astronomical obser-

vations. Physically-motivated models for the complex astrophysical processes in stars are

highly non-linear and numerically driven, and these can present challenges in traditional

statistical frameworks (Feigelson and Babu, 2012). Additionally, there is the problem of
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dealing with noisy, heterogeneous data streams that are incomplete. What this means is that

estimating the birth chemistry of stars in a cluster and providing strong limits on chemical

homogeneity is difficult.

Several studies on the chemical homogeneity of open clusters, which are clusters of

stars found in the disk, suggest homogeneity (e.g. Reddy et al., 2012; Bovy, 2016). How-

ever, some authors have found contradictory results. Studies have found inhomogeneities

in open cluster M67 member stars and attributed these inhomogeneities to stellar evolution

(e.g. Liu et al., 2019).

Bovy (2016) use forward modeling and Approximate Bayesian Inference (ABC), a

traditional likelihood-free inference method, to infer the chemical homogeneity in open

clusters given stellar spectroscopic data. Despite being successfully used in several appli-

cations in astronomy and many other branches of science, ABC methods are inefficient

when simulations are expensive since they require a large number of simulations to be run.

Density-Estimation Likelihood-Free Inference (DELFI; Bonassi et al., 2011; Fan et al.,

2013; Papamakarios and Murray, 2016; Lueckmann et al., 2018; Alsing et al., 2018; Pa-

pamakarios et al., 2018; Lueckmann et al., 2018; Alsing et al., 2019) is a new Bayesian

inference method in which density estimation is employed to perform statistical inference,

and is an improvement over ABC approaches by orders-of-magnitude. We develop a tech-

nique based on this novel Likelihood-free Inference method and infer accurate and precise

chemistry of stars in open cluster M67 given spectroscopic data.

Chemical homogeneity in open clusters strongly motivates us to tag individual star

formation events in the Milky Way by determining the chemistry of large samples of stars

and finding chemically similar groups. Open clusters get dispersed over a lifetime of ∼100

million years through random interactions in the Galaxy (Lada and Lada, 2003). Thus,

stars that were born together might currently be at very different locations in the Galaxy

but could be traced back to their birth cluster using just their chemical signatures. This

chemical tagging has the ability to map the most detailed chemical and dynamical evolution

of our Galaxy, and our studies to constrain chemical homogeneity in open clusters will help

validate this promising approach.

2. Data

We use the Apache Point Observatory Galactic Evolution Experiment (APOGEE - Ma-

jewski et al., 2017) spectroscopic data for our work. APOGEE is a high-resolution (R

∼22,500) spectroscopic survey in the infrared (H-band 1.51 to 1.70 µm) that observes

multiple targets simultaneously using a 300-fiber spectrograph (Wilson et al., 2010). We

use the APOGEE data released as part of the public Data Release 14 of Sloan Digital Sky

Survey-IV (SDSS-IV) which includes spectroscopic data for over 250,000 stars. We test the

chemical homogeneity of open cluster M67 using open cluster data in the APOGEE/Open

Cluster Chemical Abundances and Mapping (OCCAM) Data Release 14 sample (Donor

et al., 2018). We use open cluster M67 because it is a well-studied open cluster, with age

and chemistry similar to those of the Sun. The data is high-dimensional with a wavelength

grid of ∼8000 and has several masked or missing data values. Also, the data is very noisy

and the APOGEE noise characterisation is known to have issues. Our work is tailored to

deal with these types of issues.

3. Methods & Analysis

Simulators are common in science and engineering to model mechanistic processes, and

can be used to generate data using parameters of physical theories. However, the challenge



Figure 1: Modelling a spectrum using the first 10 functional principal components (FPCs).

The top panel shows the original spectrum and an overplotted reconstructed model. The

bottom panel shows the residuals between the original spectrum and model with horizontal

lines marking the APOGEE base uncertainty (0.005). The grey regions highlight what

FPCA does best: remove instrumental noise in the continuum and generate missing data.

in inference of parameters of a simulator given observed data is that p(x | θ), the likelihood,

is often intractable. This is especially true in astronomy because problems involve high-

dimensional parameter spaces and data. Here, we infer the spread in chemistry of star

clusters using spectroscopic models without making any assumptions on the likelihood; we

perform Likelihood-Free Inference.

We build an ensemble of Neural Density Estimators (NDEs) using state-of-the-art

Masked Autoregressive Flow (Papamakarios et al., 2017) and Mixture Density Networks

(Bishop, 1994) to make the model architecture flexible. We incorporate dimensionality

reduction for building computationally efficient models and active learning to explore rele-

vant regions of parameter space on the fly into DELFI (Papamakarios et al., 2018; Lueck-

mann et al., 2018). Dimensionality reduction is especially important for this problem

since the spectral data is high-dimensional. Thus, our model ensures fast, high-fidelity

likelihood-free inference.

Price-Jones and Bovy (2018) successfully reduce the dimensionality of stellar chemi-

cal space using Expectation-Maximization Principal Component Analysis (EMPCA) to 10

Principal Components (PCs) (Roweis and Saul, 2000; Bailey, 2016). Their PCs show large

scale structures which cannot be explained by theory because EMPCA cannot distinguish

between data and noise variability if the noise characterisation is imperfect. APOGEE

spectra do not have a proper noise characterisation and it is hard to disentangle all the

different kinds of noise that can affect spectral information. To tackle this, we use Func-

tional Principal Component Analysis (FPCA), the functional version of PCA, to reduce

the dimensionality of spectral data to 10 PCs that have narrow theoretical features (Ingras-

sia and Costanzo, 2005). Spectroscopic measurements are discrete samples of continuous

functions of wavelength f(λ). Each spectrum f(λ) is a single object or ”point” in a large

“spectroscopic functional space”. This motivates the use of FPCA that transforms the data

into a functional form using basis functions as follows:

fn(λ) ≈
K∑

k=1

αn,kφk(λ) (1)

where fn(λ) is the nth observed spectrum and it is regressed onto φk(λ), the K basis

functions.

This analysis is further improved by using simulated spectra as basis functions instead



Figure 2: Posterior probability distribution of a M67 red giant APOGEE spectrum us-

ing DELFI. The contours represent 68 and 95% credible intervals. Blue lines represent

the chemical abundances estimated in the APOGEE pipeline that uses a χ2 minimization

technique and internal calibration relations that assume homogeneity in clusters.

of traditional orthogonal basis functions like Legendre polynomials. By using only 50

simulations with varying chemical parameters, the ∼8000 dimensional spectroscopic space

can be reduced to PCs capturing theoretical stellar features.

4. Results & Conclusion

Using FPCA, we have successfully reduced the dimensionality of stellar spectroscopic

space with a basis of only 50 simulations. Figure 1 shows an example fit of an APOGEE

M67 red giant spectrum using 10 functional principal components. These components

have been computed using a sample of ∼50,000 red giant stars in APOGEE with −0.15 ≤
[Fe/H] ≤ 0.151. Using FPCA and DELFI, we have accurately and efficiently inferred the

abundance of 15 different elements in open cluster M67 member stars given their APOGEE

1[X/H] refers to the logarithm of the abundance of element X in a star compared to its Hydrogen content

with respect to that of the Sun. The unit used is the dex which stands for decimal exponent.



spectra. Figure 2 shows an example posterior distribution of 5 different chemical abun-

dances, [C/H], [Mg/H], [Al/H], [Si/H], [Mn/H], [Fe/H] given a M67 red giant member

APOGEE spectrum. Our work is in progress, and we are currently constraining the level

of chemical homogeneity in open cluster M67. We will extend this to other open clusters,

and potentially to globular clusters as well. Once we determine the level of chemical homo-

geneity in star clusters, we will put theoretical constraints on models of star-forming clouds.

Eventually, we want to apply this method to infer the chemistry of the entire APOGEE

spectroscopic survey that includes millions of stars. This will allow us to perform chemical

tagging and provide the finest details on the evolution of our Galaxy.
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